An Efficient Synthesis of (±**)-Lycoricidine Featuring a Stille**−**IMDAF Cycloaddition Cascade**

ORGANIC LETTERS 2006 Vol. 8, No. 2 ²⁴⁷-**²⁵⁰**

Hongjun Zhang and Albert Padwa*

*Department of Chemistry, Emory Uni*V*ersity, Atlanta, Georgia 30322*

chemap@emory.edu

Received October 18, 2005

A highly efficient total synthesis of (±**)-Lycoricidine is described. The synthesis features the ready preparation of the Lycoricidine skeleton by a Stille**−**IMDAF cycloaddition cascade. The resulting cycloadduct is then used for the stereocontrolled installation of the other functionality present in the C-ring of the target molecule.**

Many of the lycorine-type *Amaryllidaceae* alkaloids display useful biological properties, $¹$ and as a consequence this family</sup> has captured the interest of a number of synthetic groups as targets for total synthesis.2 The history of the hydroxylated phenanthridones of the *Amaryllidaceae* group, their biological profiles, and various syntheses have been reviewed on several occasions,³ most recently by Hudlicky and Rinner in 2005.⁴ Lycoricidine (1) ,⁵ the structurally related Narciclasine (2) , ⁶ as well as Pancratistatin (3) ⁷ and 7-Deoxypancratistatin (**4**) ⁸ are popular synthetic targets primarily because their heterocyclic framework provides a means to demonstrate the utility of new synthetic strategies.⁴ In addition, the narcissus alkaloids are available only in small quantities from

(4) Rinner, U.; Hudlicky, T. *Synlett* **2005**, 365.

natural sources, 9 and their use as therapeutic agents¹⁰ depends on their ready availability. The principle hurdles to their

(6) For syntheses of Narciclasine, see: (a) Mondon, A.; Krohn, K. *Tetrahedron Lett.* **1972**, *13*, 2085. (b) Mondon, A.; Krohn, K. *Chem. Ber.* **1975**, *108*, 445. (c) Krohn, K.; Mondon, A. *Chem. Ber.* **1976**, *109*, 855. (d) Rigby, J. H.; Mateo, M. E. *J. Am. Chem. Soc.* **1997**, *119*, 12655. (e) Rigby, J. H.; Maharoof, U. S. M.; Mateo, M. E. *J. Am. Chem. Soc.* **2000**, *122*, 6624. (f) Gonzalez, D.; Martinot, T.; Hudlicky, T. *Tetrahedron Lett.* **1999**, *40*, 3077.

(7) For syntheses of Pancratistatin, see: (a) Danishefsky, S.; Lee, J. Y. *J. Am. Chem. Soc.* **1989**, *111*, 4829. (b) Tian, X.; Hudlicky, T.; Königsberger, K. *J. Am. Chem. Soc.* **1995**, *117*, 3643. (c) Trost, B. M.; Pulley, S. R. *J. Am. Chem. Soc.* **1995**, *117*, 10143. (d) Keck, G. E.; McHardy, S. F.; Murry, J. A. *J. Am. Chem. Soc.* **1995**, *117*, 7289. (e) Hudlicky, T.; Tian, X. R.; Königsberger, K.; Mauray, R.; Rouden, J.; Fan. B. J. Am. Chem. Soc. **1996**, *118*, 10752. (f) Chida, N.; Jitsuoka, M.; Yamamoto, Y.; Ohtsuka, M.; Ogawa, S. *Heterocycles* **1996**, *43*, 1385. (g) Doyle, T. J.; Hendrix, M.; VanDerveer, D.; Javanmard, S.; Haseltine, J. *Tetrahedron* **1997**, *53*, 11153. (h) Magnus, P.; Sebhat, I. K. *Tetrahedron* **1998**, *54*, 15509. (i) Magnus, P.; Sebhat, I. K. *J. Am. Chem. Soc.* **1998**, *120*, 5341. (j) Pettit, G. R.; Melody, N.; Herald, D. L. *J. Org. Chem.* **2001**, *66*, 2583. (k) Kim, S.; Ko, H.; Kim, E.; Kim, D. *Org. Lett.* **2002**, *4*, 1343. (l) Ko, H. J.; Park, J. E.; Kim, S. *J. Org. Chem.* **2004**, *69*, 112.

^{(1) (}a) Hartwell, J. L. *Lloydia* **1967**, *30*, 379. (b) Fitzgerald, D. B.; Hartwell, J. L.; Leiter, J. *J. Nat. Cancer Inst*. **1958**, *20*, 763. (c) Pettit, G. R.; Gaddamidi, V.; Herald, D. L.; Singh, S. B.; Cragg, G. M.; Schmidt, J. M.; Boettner, F. E.; Williams, M.; Sagawa, Y. *J. Nat. Prod.* **1986**, *49*, 995. (d) Ceriotti, G. *Nature* **1967**, *213*, 595. (e) Okamoto, T.; Torii, Y.; Isogai, Y. *Chem. Pharm. Bull.* **1968**, *16*, 1860.

⁽²⁾ For some leading references, see: (a) Hudlicky, T. *J. Heterocycl. Chem.* **2000**, *37*, 535. (b) Martin, S. F. The Amaryllidaceae Alkaloids. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York, 1987; Vol. 30, Chapter 3, pp 251-376.

^{(3) (}a) Polt, R. In *Organic Synthesis: Theory and Applications*; Hudlicky, T., Ed.; JAI Press: Greenwich, CT; 1997; Vol. 3, p 109. (b) Hoshino, O. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol. 51, p 323. (c) Jin, Z. *Nat. Prod. Rep.* **2003**, *20*, 606.

^{10.1021/}ol052524f CCC: \$33.50 © 2006 American Chemical Society **Published on Web 12/16/2005**

⁽⁵⁾ For syntheses of Lycoricidine, see: (a) Ohta, S.; Kimoto, S. *Chem. Pharm. Bull.* **1976**, *24*, 2977. (b) Paulsen, H.; Stubbe, M. *Tetrahedron Lett.* **1982**, *23*, 3171. (c) Paulsen, H.; Stubbe, M. *Liebigs Ann. Chem.* **1983**, 535. (d) Chida, N.; Ohtsuka, M.; Ogawa, S. *Tetrahedron Lett.* **1991**, *32*, 4525. (e) Hudlicky, T.; Olivo, H. F. *J. Am. Chem. Soc.* **1992**, *114*, 9694. (f) Chida, N.; Ohtsuka, M.; Ogawa, S. *J. Org. Chem.* **1993**, *58*, 4441. (g) Martin, S. F.; Tso, H. H. *Heterocycles* **1993**, *35*, 85. (h) Hudlicky, T.; Olivo, H. F.; McKibben, B. *J. Am. Chem. Soc.* **1994**, *116*, 5108. (i) Keck, G. E.; Wager, T. T. *J. Org. Chem.* **1996**, *61*, 8366. (j) Elango, S.; Yan, T. H. *Tetrahedron* **2002**, *58*, 7375.

synthesis include the introduction of the aryl group and the stereocontrolled construction of the fused BC ring system.

A major strategy that is routinely employed for the synthesis of the lycorine group consists of constructing two fragments representing the A and C cycles, which are then coupled together to form the B ring. This approach often involves formation of the *10a-10b* carbon-carbon bond by either a palladium-based¹¹ or photocyclization^{6d} reaction, although other coupling methods have also been used.3,4 An alternate synthetic route would be the formation of the C-ring from a suitable precursor in which the *10a-10b* bond of the target is already present.^{12,13} It is against this background that we report a short and efficient synthesis of (\pm) -Lycoricidine. Our approach derives from a general program underway in our laboratory that is designed to exploit the facile Diels-Alder reaction of amidofurans for the purposes of natural product synthesis.14 Our retrosynthetic analysis of (\pm) -Lycoricidine is shown in Scheme 1 and makes use

of a tandem cascade sequence consisting of a Stille coupling15 followed by a spontaneous intramolecular $[4 + 2]$ -cycload-

dition of an amidofuran (IMDAF). The resulting cycloadduct **6** is then used for the stereocontrolled installation of the other functionality present in the C-ring of Lycoricidine. The carbomethoxy substituent is utilized as a critical control element not only to facilitate the $[4 + 2]$ -cycloaddition but also to provide a handle for the introduction of the required π -bond and to set the stereochemistry at the C_{4a}-ring juncture.

Our synthesis of amidofuran **7** began by coupling the known acid chloride **9**¹⁶ with the lithiated carbamate **10b** derived by treating furanyl-2-ylcarbamic acid *tert-*butyl ester (**10a**) with *n*-BuLi. Removal of the *t*-Boc protecting group from the resulting carbamate 11 with Mg(ClO₄)₂ afforded NH amide **12** in 75% yield, and this was followed by reaction with NaH and *p*-methoxybenzyl chloride to give **7** in 83% yield*.* ¹⁷ The methyl acrylate moiety was introduced by means of a Stille coupling15 using methyl 2-tri-*n*-butylstannylacrylate¹⁸ (Scheme 2). The optimum conditions for this reaction

were eventually determined to be those described by Corey that utilize a combination of CuCl/Pd(0)/LiCl for the key coupling.19 The use of DMSO with rigorous exclusion of

(16) McIntosh, M. C.; Weinreb, S. M. *J. Org. Chem.* **1993**, *58*, 4823. (17) Replacement of the *t*-Boc group with the PMB functionality was necessary for the subsequent Stille reaction.

^{(8) (}a) Akgun, H.; Hudlicky, T. *Tetrahedron Lett.* **1999**, *40*, 3081. (b) Rinner, U.; Siengalewicz, P.; Hudlicky, T. *Org. Lett.* **2002**, *4*, 115. (c) Tian, X.; Maurya, R.; Königsberger, K. Synlett 1995, 1125. (d) Keck, G. E.; Wager, T. T.; McHardy, S. F. *J. Org. Chem.* **1998**, *63*, 9164. (e) Keck, G. E.; McHardy, S. F.; Murry, J. A. *J. Am. Chem. Soc.* **1995**, *117*, 7289. (f) Acena, J. L.; Arjona, O.; Leon, M. L.; Plumet, J. *Org. Lett.* **2000**, *2*, 3683. (9) Pettit, G. R.; Backhaus, R. A.; Boettner, F. E. *J. Nat. Prod.* **1995**, *58*, 37.

^{(10) (}a) Pettit, G. R.; Freeman, S.; Simpson, M. J.; Thompson, M. A.; Boyd, M. R.; Williams, G. R.; Pettit, G. R., III; Doubek, D. L. *Anti-Cancer Drug Des.* **1995**, *10*, 243. (b) Pettit, G. R.; Orr, S.; Ducki, S. *Anti-Cancer Drug Des.* **2000**, *15*, 389.

⁽¹¹⁾ Grubb, L. M.; Dowdy, A. L.; Blanchette, H. S.; Friestad, G. K.; Branchaud, B. P. *Tetrahedron Lett.* **1999**, *40*, 2691.

^{(12) (}j) Keck, G. E.; Wager, T. T.; Rodriquez, J. F. D. *J. Am. Chem. Soc.* **1999**, *121*, 5176.

⁽¹³⁾ Khaldi, M.; Chre'tien, F.; Chapleur, Y. *Tetrahedron Lett.* **1995**, *36*, 3003.

^{(14) (}a) Wang, Q.; Padwa, A. *Org. Lett.* **2004**, *6*, 2189. (b) Padwa, A.; Ginn, J. D. *J. Org. Chem.* **2005**, *70*, 5197. (c) Padwa, A.; Bur, S. K.; Zhang, H. *J. Org. Chem.* **2005**, *70*, 6833.

⁽¹⁵⁾ Farina, V.; Krishnamurphy, V.; Scott, W. J. *Org. React.* **1997**, *50*, 1.

^{(18) (}a) Zhang, H. X.; Guiibe, F.; Balavoine, G. *J. Org. Chem.* **1990**, *55*, 1857. (b) Miyake, H.; Yamamura, K. *Chem. Lett.* **1989**, 981. (c) Cochran, J. C.; Bronk, B. S.; Terrence, K. M.; Philips, H. K. *Tetrahedron Lett.* **1990**, *31*, 6621.

oxygen and moisture at 60 °C gave the best results. The expected cross-coupled amidofuran **13**, however, was not isolated as it spontaneously underwent an intramolecular [4 + 2]-cycloaddition to furnish cycloadduct **⁶** in 82% overall yield for the two-step cascade. The increase in reactivity of **13** when compared to related furanyl carbamates²⁰ (>150) °C) is due to both the placement of the carbonyl center within the dienophilic tether and the presence of the carbomethoxy group, which lowers the LUMO energy of the π -bond thereby facilitating the cycloaddition. Dramatic effects on the rate of the Diels-Alder reaction were previously noted to occur when an amido group was used to anchor the diene and dienophile.21 Our ability to isolate oxabicyclic adduct **6** is presumably a result of the lower reaction temperature employed (i.e., 60 °C) as well as the presence of the amido carbonyl group, which diminishes the basicity of the nitrogen atom thereby retarding the ring cleavage/rearrangement reaction generally encountered with these systems.²⁰ Moreover, the IMDAF cycloaddition proceeds by a transition state where the sidearm of the tethered vinyl group is oriented *exo* with respect to the oxygen bridge.²² As a consequence of this preferred orientation, the carbomethoxy group and oxy-bridge are disposed in an *anti* relationship in the resulting cycloadduct **6**.

With the rapid construction of the Lycoricidine framework in hand, installation of the other functional groups present on the C-ring with the correct relative stereochemistry was investigated. To continue the synthesis, cycloadduct **6** was transformed to diol 14 by reaction with catalytic $OsO₄$ in the presence of 4-methyl-morpholine-*N*-oxide. The dihydroxylation reaction occurred exclusively from the less hindered *exo* face, producing **14** in 98% yield (Scheme 3).

Having introduced the correct *cis*-stereochemistry of the hydroxyl groups at the C_3 , C_4 positions, we then proceeded to set the stereochemistry at the C_{4a} position, insert the remaining α -hydroxyl group at C_2 , and ultimately introduce the required π -bond. All of these operations were facilitated by making use of the available carbomethoxy group (vide infra). First, diol **14** was converted to the corresponding acetonide **15** in 80% yield by treatment with 2,2-dimethoxypropane and catalytic pyridinium *p*-toluenesulfonate. The uniquely functionalized oxabicyclic adduct **15** contains a "masked" *N*-acyliminium ion that can be released by treatment with a Lewis acid such as TMSOTf. When the resulting ring-opened iminium ion was treated with $Zn(BH_4)_2$ ²³ alcohol **5** was obtained in 74% yield.

What was required for the end game leading to Lycoricidine (1) was to invert the stereochemistry of the C_2 -hydroxyl group, remove the carbomethoxy moiety, and generate a double bond between the C_1-C_{10b} position of the C-ring. To this end, compound **5** was treated with NaH followed by the addition of CS_2 and MeI to give the corresponding xanthate ester, which upon heating at reflux in 1,2-dichlorobenzene for 12 h afforded the expected olefin derived from a Chugaev elimination²⁴ in 94% yield (Scheme 4). Since the

 $β$ -face of the *π*-bond of **16** was blocked by the bulky acetonide, a dihydroxylation reaction was expected to take place from the less hindered α -face, *syn* to the carbomethoxy group, thereby setting the correct stereochemistry of the C_2 -hydroxyl group. Indeed, when **16** was treated with $OsO₄/$ NMO, the desired diol **17** was formed as a transient species but underwent spontaneous cyclization with the adjacent

⁽¹⁹⁾ Han, X.; Stoltz, B. M.; Corey, E. J. *J. Am. Chem. Soc.* **1999**, *121*, 7600.

^{(20) (}a) Padwa, A.; Brodney, M. A.; Dimitroff, M. *J. Org. Chem.* **1998**, *63*, 5304. (b) Bur, S. K.; Lynch, S. M.; Padwa, A. *Org. Lett.* **2002**, *4*, 473. (c) Ginn, J. D.; Padwa, A. *Org. Lett.* **2002**, *4*, 1515.

carbomethoxy group to deliver *γ*-lactone **18**. A subsequent mesylation reaction afforded mesylate **19** in 76% yield for the two-step sequence starting from **16**. The *γ*-lactonization of 17 to 18 permits the selective activation of the C_1 -hydroxyl group. The PMB group was removed by the reaction of **19** with $PdCl₂$ in the presence of acetic acid²⁵ to furnish the deprotected amide. Gratifyingly, the reaction of this amide with LiOH in aqueous THF induced a novel tandem hydrolysis/decarboxylation/elimination sequence²⁶ to furnish allylic alcohol **20**. Deprotection of the acetonide with TFA afforded (\pm) -Lycoricidine in 90% yield.

In summary, we have described here a novel and highly efficient synthesis of (\pm) -Lycoricidine, which was achieved in 14 steps with a 12.6% overall yield. The synthesis illustrates (a) the use of a one-pot Stille-IMDAF cycloaddition cascade to construct the ring skeleton, (b) a stereocontrolled dihydroxylation and *N*-acyliminium ion reduction to set the correct stereochemistry at carbon atoms C_3 , C_4 , and C_{4a}, and (c) the novel introduction of the $C_1-C_{10b} \pi$ -bond by a one-pot hydrolysis-decarboxylation-elimination sequence. The application of this approach to other members of the lycorine family of alkaloids is currently under investigation, the results of which will be disclosed in due course.

Acknowledgment. We appreciate the financial support provided the The National Institutes of Health (GM059384) and The National Science Foundation (CHE-0450779).

Supporting Information Available: Spectroscopic data and experimental details for the preparation of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052524F

^{(21) (}a) Oppolzer, W.; Fröstl, W. *Helv. Chem. Acta* 1975, 58, 590. (b) White, J. D.; Demnitz, F. W. J.; Oda, H.; Hassler, C.; Snyder, J. P. *Org. Lett.* **2000**, *2*, 3313. (c) Padwa, A.; Ginn, J. D.; Bur, S. K.; Eidell, C. K.; Lynch, S. M. *J. Org. Chem.* **2002**, *67*, 3412. (d) Tantillo, D. J.; Houk, K. N.; Jung, M. E. *J. Org. Chem.* **2001**, *66*, 1938.

⁽²²⁾ Padwa, A.; Brodney, M. A.; Satake, K.; Straub, C. S. *J. Org. Chem.* **1999**, *64*, 4617.

⁽²³⁾ Gensler, W. J.; Johnson, F.; Sloan, A. D. B. *J. Am. Chem. Soc.* **1960**, *82*, 6074.

⁽²⁴⁾ Nace, H. R. *Org. React.* **1962**, *12*, 57.

⁽²⁵⁾ Keck, G. E.; Boden, E.; Sonnewald, U. *Tetrahedron Lett.* **1981**, *22*, 2615.

⁽²⁶⁾ For a related fragmentation reaction, see: Khim, S.; Dai, M.; Zhang, X.; Chen, L.; Pettus, L.; Thakkar, K.; Schultz, A. G. *J. Org. Chem.* **2004**, *69*, 7728.